Two reasons machine learning is warming up for industrial companies

Machine learning isn’t new.  Expert systems were a strong research topic in the 1970’s and 1980’s and often embodied machine learning approaches.  Machine learning is a subset of predictive analytics, a subset that is highly automated, embedded, and self-modifying.  Currently, enthusiasm for machine learning is seeing a strong resurgence, with two factors driving that renewed interest:

Plentiful data.  It’s a popular adage with machine learning experts:  In the long run, a weaker algorithm with lots of training data will outperform a stronger algorithm with less training data.  That’s because machine learning algorithms naturally adapt to produce better results based on the data they are fed, and the feedback they receive.  And clearly, industry is entering an era of plentiful data. Data generated by the Industrial Internet of Things (IIoT) will ensure that.  However, on the personal / consumer side of things, that era has already arrived.  For example, in 2012 Google trained a machine learning algorithm to recognize cats by feeding it ten million images of cats.Today’s it’s relatively easy to find vast numbers of images, but in the 1980’s who had access to such an image library…?  Beyond perhaps a few shady government organizations, nobody.  For example, eighteen months ago Facebook reported that users were uploading 350 million images every day.  (Yes, you read that correctly, over a third of a billion images every day).  Consequently, the ability to find enough relevant training data for many applications is no longer a concern.  In fact, the concern may rapidly switch to how do you find the right, or best, training data – but that’s another story…

Lower Barriers to Entry.  The landscape of commercial software and solutions has been changed permanently by two major factors in the last decade or so:  Open source and the cloud.  Red Hat – twenty-two years old and counting – is the first company that provided enterprise software using an open source business model.  Other companies have followed Red Hat’s lead, although none have been as commercially successfully.  Typically, the enterprise commercial open source business model revolves around a no-fee version of a core software product – the Linux operating system in the case of Red Hat.  This is fully functional software, not a time–limited trial, for example.  However, although the core product is free, revenue is generated from a number of optional services, and potential product enhancements.  The key point of the open source model is this:  It makes evaluation and experimentation so much easier.  Literally anyone with an internet connection can download the product and start to use it.  This makes it easy to evaluate, distribute and propagate the software throughout the organization as desired.

Use of the cloud also significantly lowers the barriers to entry for anyone looking to explore machine learning.  In a similar way to the open source model, cloud-based solutions are very easy for potential customers to explore. Typically, this would just involve registering to create a free account on the provider’s website, and then starting to develop and evaluate applications. Usually, online training and educational materials are provided too.  The exact amount of “free” resources available varies depending on the vendor. Some may limit free evaluation to a certain period, such as thirty days.  Others may limit the number of machine learning models built, or how many times they can be executed, for free. At the extreme though, some providers will provide some limited form of machine learning capacity, free of charge, forever.

Like open source solutions, cloud-based solutions also make it easier – and reduce the risk – for organizations to get started with machine learning applications.  Just show up at the vendors website, register, and get started. Compare both the cloud and open source to to the traditionally licensed, on-premise installed software product. In this case, the purchase needs to be made, a license obtained, software downloaded and installed. A process that could, in many corporations, take weeks to achieve.  A process that may need to be repeated every time the machine learning application is deployed in a production environment…

My upcoming strategy report on machine learning will review a number of the horizontal machine learning tools and platforms available.  If you can’t wait for that to get started, simply type “machine learning” into your search engine of choice and you’re just 5 minutes away from getting started.

(Originally published on industrial-iot.com, a blog by ARC Advisory Group analysts)

Re-inventing Healthcare: Cutting Re-admission rates with predictive analytics

Managing unplanned re-admissions is a persistent and enduring problem for healthcare providers.  Analysis of Medicare claims from over a decade ago showed that over 19% of beneficiaries were re-admitted within 30 days.  Attention on this measure increased when the Affordable Care Act introduced penalties for excessive re-admits.  However, many hospitals – including those in South Florida and Texas – are losing millions in revenue because of their inability to meet performance targets.

Carolinas HealthCare System has applied predictive analytics to the problem, using Predixion Software and Premier Inc.  Essentially, by using patient and population data, Carolinas is able to calculate a more timely, more accurate assessment of the re-admit risk.  The hospital can then put in place a post-acute care plan to try and minimize the risk of re-admission.  You can find a brief ten minute webinar presented by the hospital here.  But, from an analytics, information management  and decision making perspective, here are the key points:

  • The risk assessment for readmission is now done before the patient examination, not after it. Making that assessment early means there is more time to plan for the most appropriate care after discharge.
  • The risk assessment is now more precise, accurate, and consistent.  In the past, the hospital just categorized patients into two buckets – high risk and low risk.  There are now four bands of risk so the care team can make a more nuanced assessment of risk and plan accordingly.  Further, the use of Predixion’s predictive analytics software means that far more variables can be considered to make the determination of risk.  Us puny human’s can only realistically work with a few variables well to make a decision.  Predictive analytics allowed more than 40 data points from the EMR, ED etc. to be used to make a more accurate assessment of risk.  Finally, calculating the risk using software meant that Carolinas could avoid any variability introduced by case managers with different experience and skills.
  • The risk assessment is constantly updated.  In practice, the re-admission risk for any individual patient is going to change throughout the care process in the hospital.  So, a patients re-admission risk is now recalculated and updated hourly – not just once at the time of admission which was situation in the past.
  • The overall accuracy of risk assessment gets better over time.  A software-centered approach means that suggested intervention plans can be built in – so again reducing variability in the quality of care.  But, the data-centric approach means that the efficacy of treatment plans can also be easily measured and adjusted over the long-term.

Overall, this data-driven approach to care is a win-win.  It results in higher care quality and better outcomes for the patient.  And Carolinas HealthCare System improves its financial performance too.  This is all possible because more of the risk assessment is now based on hard data, not intuition.